aihot  2017-06-17 21:25:43  深度学习 |   查看评论   
级联线性回归模型

 

        面部特征点定位问题可以看作是学习一个回归函数F,以图象I作为输入,输出θ为特征点的位置(人脸形状):θ = F(I)
        简单的说,级联回归模型可以统一为以下框架:学习多个回归函数{f1 ,…, fn-1, fn}来逼近函数F

θ = FI=  fn (fn-1 (…f1(θ0I) ,I) , I)

θi= fi (θi-1, I),    i=1,…,n

        所谓的级联,即当前函数fi的输入依赖于上一级函数fi-1的输出θi-1而每一个fi的学习目标都是逼近特征点的真实位置θθ0为初始形状。通常情况,fi不是直接回归真实位置θ而回归当前形状θi-1与真实位置θ之间的差:Δθi θ θi-1

 

        接下来我将详细介绍几个典型的形状回归方法,他们根本的不同点在于函数fi的设计不同以及输入特征不同。
        在加州理工学院从事博士后研究的Piotr Dollár于2010年首次提出级联形状回归模型CascadedPose Regression(CPR),来预测物体的形状,该工作发表在国际计算机视觉与模式识别会议CVPR上。如下图所示,如下图所示,给定初始形状θ0通常为平均形状,根据初始形状θ0提取特征(两个像素点的差值)作为函数f1的输入。每个函数fi建模成Random Fern回归器,来预测当前形状θi-1与目标形状θ的差Δθi,并根据ΔӪi预测结果更新当前形状得θ = θi-1+ΔӪi,作为下一级函数fi+1的输入。该方法在人脸、老鼠和鱼三个数据集上取得不错的实验结果,通用的算法框架亦可用于其他形状估计任务,比如人体姿态估计等。该方法的不足之处在于对初始化形状θ0比较敏感,使用不同的初始化做多次测试并融合多次预测结果可以一定程度上缓解初始化对于算法的影响,但并不能完全解决该问题,且多次测试会带来额外的运算开销。当目标物体被遮挡时,性能也会变差。

面部特征点定位概述及最近研究进展

 

        与上一个工作来自同一课题组的Xavier P. Burgos-Artizzu,针对CPR方法的不足,进一步提出Robust Cascaded Pose Regression(RCPR)方法,并发表在2013年国际计算视觉会议ICCV上。为了解决遮挡问题,Piotr Dollár提出同时预测人脸形状和特征点是否被遮挡的状态,即fi的输出包含Δθi和每个特征点是否被遮挡的状态pi
           {Δθi , pi }= fi(θi-1, I),    i=1,…,n
        当某些特征点被遮挡时,则不选取该特征点所在区域的特征作为输入,从而避免遮挡对定位的干扰。此外,作者提出智能重启技术来解决形状初始化敏感的问题:随机初始化一组形状,运行{f1 ,…,fn-1, fn}的前10%的函数,统计形状预测的方差,如果方差小于一定阈值,说明这组初始化不错,则跑完剩下的90%的级联函数,得到最终的预测结果;如果方差大于一定阈值,则说明初始化不理想,选择重新初始化一组形状。该策略想法直接,但效果很不错。
        另外一个很有趣的工作Supervised Descent Method(SDM),从另一个角度思考问题,即考虑如何使用监督梯度下降的方法来求解非线性最小二乘问题,并成功地应用在面部特征点定位任务上。不难发现,该方法最终的算法框架也是一个级联回归模型。与CPR和RCPR不同的地方在于:fi建模成了线性回归模型;fi的输入为与人脸形状相关的SIFT特征。该特征的提取也很简单,即在当前人脸形状θi-1的每个特征点上提取一个128维的SIFT特征,并将所有SIFT特征串联到一起作为fi的输入。该方法在LFPWLFW-A&C;数据集上取得不错的定位结果。同时期的另一个工作DRMF则是使用支持向量回归SVR来建模回归函数fi,并使用形状相关的HOG特征(提取方式与形状相关的SIFT类似)作为fi输入,来级联预测人脸形状。与SDM最大的不同在于,DRMF对于人脸形状做了参数化的建模。fi的目标变为预测这些形状参数而不再是直接的人脸形状。这两个工作同时发表在CVPR 2013上。由于人脸形状参数化模型很难完美地刻画所有形状变化,SDM的实测效果要优于DRMF。
        微软亚洲研究院孙剑研究员的团队在CVPR 2014上提出更加高效的级联形状回归方法Regressing LocalBinary Features(LBF)。和SDM类似,fi也是建模成线性回归模型;不同的地方在于,SDM直接使用SIFT特征,LBF则基于随机森林回归模型在局部区域学习稀疏二值化特征。通过学习稀疏二值化特征,大大减少了运算开销,比CRP、RCPR、SDM、DRMF等方法具有更高的运行效率(LBF可以在手机上跑到300FPS),并且在IBUG公开评测集上取得优于SDM、RCPR的性能。

线性回归

 

        级联形状回归模型成功的关键在于:

        1. 使用了形状相关特征,即函数fi的输入和当前的人脸形状θi-1紧密相关

        2. 函数fi的目标也与当前的人脸形状θi-1相关,即fi的优化目标为当前形状θi-1与真实位置θ之间的差Δθi。

        此类方法在可控和非可控的场景下均取得良好的定位效果,且具有很好的实时性。

 

除特别注明外,本站所有文章均为 赢咖4注册 原创,转载请注明出处来自面部特征点定位概述及最近研究进展

留言与评论(共有 0 条评论)
   
验证码:
[lianlun]1[/lianlun]